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Abstract. The transport characteristics of pure narrow 2D conductors, in which the electron
scattering is caused by rough side boundaries, have been studied. The conductance of such
strips is highly sensitive to the intercorrelation properties of inhomogeneities of the opposite
edges. The case with completely correlated statistically identical boundaries (CCB) is a peculiar
one. Herein the electron scattering is uniquely due to fluctuations of the asperity slope and
is not related to the strip width fluctuations. Owing to this, the electron relaxation lengths,
and specifically the localization length, depend quite differently on the asperity parameters
as compared to the case for conductors with arbitrarily intercorrelated edges. A method for
calculating the dynamical characteristics of the CCB electron waveguides is proposed clear of
any restrictions on the asperity height.

1. Introduction

The application of narrow conducting junctions with extremely small cross sections in
contemporary microelectronics has generated a great variety of work on the transport
properties of such conductors. These properties were proved to be substantially controlled
by scattering of electrons at random inhomogeneities of the conductor boundaries (see,
e.g., references [1–9] and references therein). In particular, in reference [2] pure single-
mode 2D conductors were shown to exhibit all of the peculiarities characteristic for one-
dimensional disordered systems. Their conductance is specified by the coherent electron–
surface scattering which causes the localization effects. This certainly constrains the length-
wise dimensions of narrow microjunctions in view of the exponential increase of their
resistivity with growing length.

When producing 2D conductors of quite small width it is highly possible, owing to
the technology, for the opposite boundaries of the strips to have exactly the same or
sufficiently close statistical properties. Among the models of such statistically identical
rough boundaries, two substantially different ones are distinguished. One of them includes
the strips with no correlation between the asperities of the opposite edges. Within the other
model, the correlation between the asperities of the opposite boundaries is the same as the
correlation at any strip edge. Boundaries of the latter type will be referred to as completely
correlated (CCB). In reference [2] the electron scattering caused by irregularities of only
one boundary of the conducting strip were analysed, the other being perfectly smooth. The
results obtained are clearly applicable for the former (not intercorrelated) kind of boundary.
At the same time, the CCB conductors have not received due attention so far.
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In this contribution, the CCB case is examined and shown to be a special one. The model
considered is physically equivalent to that in which the conductor width keeps constant (or
nearly constant) along the whole length, despite inhomogeneities of the strip edges. The
local mode structure of the electron waveguide therein remains undisturbed. As a result,
the electron scattering is due not to the asperity heights, whose values are not restricted in
the problem, but to the asperity slopes only.

It is well known that the by-height scattering is controlled by the parameter(kF σ )
2 (kF

is the Fermi wavenumber of the electrons), and the electron relaxation rate is proportional
to the square of the r.m.s. asperity heightσ (see, e.g., references [2, 7]). We argue below
that in the single-mode CCB strips the main controlling factor is the ratio(σ/Rc)

4 (Rc is
the correlation radius of the boundary asperities). Therefore, the electron scattering rate is
proportional to a higher, namely the fourth, power ofσ . At first glance, it appears that
this should give rise to an increase of the localization length as compared to that from
reference [2]. However, this is not the case as a rule. In a single-mode CCB strip even
with mildly sloping boundary asperities, the electron localization length for certain, easily
achievable, conditions appears to be much less than the by-height scattering length.

2. Formulation of the problem

Let a two-dimensional conducting strip of lengthL and average widthd occupy the region
of (x, z) plane specified by the inequalities

−L/26 x 6 L/2 ξ1(x) 6 z 6 d + ξ2(x). (1)

The functionsξ1,2(x) describe asperities of the edges of the strip. We assume them to
be continuously differentiable random processes with zero mean values. The correlation
properties thereof will be thoroughly discussed below.

In accordance with the standard linear response theory [10], the conductance (as well as
the conductivity) is expressed through a product of differences between the advanced and
retarded one-electron Green functions (see, e.g., references [11, 12]). In what follows the
electron scattering will be assumed weak (see equation (15)). It is well proved [13, 14] that
under these conditions one can neglect the products of the like Green functions (both retarded
and both advanced) in the general expression for the conductance. Taking into account the
relation between the advanced and retarded Green functions, the conductanceG(L) of the
strip, divided by the conductance quantume2/πh̄, at zero temperature is represented as

G(L)

e2/πh̄
= − 4

L2

∫ L/2

−L/2
dx
∫ d+ξ2(x)

ξ1(x)

dz
∫ L/2

−L/2
dx ′

∫ d+ξ2(x
′)

ξ1(x ′)
dz′

∂G(x, x ′; z, z′)
∂x

× ∂G∗(x, x ′; z, z′)
∂x ′

. (2)

HereG(x, x ′; z, z′) is the retarded one-electron Green function obeying the equation[
∂2

∂x2
+ ∂2

∂z2
+ (kF + i0)2

]
G(x, x ′; z, z′) = δ(x − x ′)δ(z− z′) (3)

with kF the Fermi wavenumber. The asterisk in equation (2) denotes complex conjugation.
We consider the functionG meeting the zero Dirichlet boundary conditions at the strip edges
z = ξ1(x) andz = d + ξ2(x), whereas at the strip endsx = ±L/2 the radiative conditions
are satisfied.

In solving problems related to the boundary scattering in waveguides, the coordinate
transformation is often applied to smooth out both boundaries towards ideally flat forms
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(see, e.g., reference [7]). For our purpose it is more convenient to smooth only one side
of the strip. Let it be, for definiteness, the lower one which we smooth out to the line
znew= 0. This is done via a transformation of the transverse coordinate,znew= zold−ξ1(x),
accompanied by the corresponding change of the longitudinal velocity operator. As a result,
the perturbationξ1(x) is transferred to both the conductance expression (2)

G(L)

e2/πh̄
= − 4

L2

∫ L/2

−L/2
dx
∫ d(x)

0
dz
∫ L/2

−L/2
dx ′

∫ d(x ′)

0
dz′

[
∂

∂x
− ξ ′1(x)

∂

∂z

]
G(x, x ′; z, z′)

×
[
∂

∂x ′
− ξ ′1(x ′)

∂

∂z′

]
G∗(x, x ′; z, z′) (4)

and to the Green function equation (3) which takes the form[
∂2

∂x2
+ α2 ∂

2

∂z2
+ (kF + i0)2

]
G(x, x ′; z, z′)

−
[
Û(x) ∂

∂z
− V̂(x) ∂

2

∂z2

]
G(x, x ′; z, z′) = δ(x − x ′)δ(z− z′). (5)

From here on we use the notation listed below. In equation (4),d(x) stands for the local
width of the strip:

d(x) = d +1ξ(x) 1ξ(x) = ξ2(x)− ξ1(x) (6)

with 1ξ(x) being the width fluctuation. Next, in equation (5), the factorα2 and the effective
zero-mean-valued ‘potentials’̂V(x) and Û(x) of the electron–surface interaction have been
introduced:

α2 = 1+ 〈ξ ′12
(x)〉 V̂(x) = ξ ′12

(x)− 〈ξ ′12
(x)〉 Û(x) = ξ ′1(x)

∂

∂x
+ ∂

∂x
ξ ′1(x).

(7)

The angular brackets〈· · ·〉 denote averaging over realizations of the random functions
ξ1,2(x), and the primes on functions indicate derivatives over their arguments.

To analyse the electron transport in a narrow 2D waveguide, where quantization of
the electron transverse motion is rather considerable, we apply the discrete, i.e. ‘mode’,
representation in the coordinatez. The Green function now becomes zero atz = 0 and
z = d(x). Then, allowing for this, we presentG(x, x ′; z, z′) as a series:

G(x, x ′; z, z′) = 2√
d(x)d(x ′)

∞∑
n,n′=1

Gnn′(x, x
′) sin

(
πnz

d(x)

)
sin

(
πn′z′

d(x ′)

)
. (8)

By substituting equation (8) into equation (5) we arrive at the following set of equations
for the Fourier coefficientsGnn′(x, x

′):{
∂2

∂x2
+ k2

n(x)+ i0−
[
πn

d(x)

]2

V̂(x)
}
Gnn′(x, x

′)− 4

d(x)

∞∑
m=1

AnmÛ(x)Gmn′(x, x
′)

+ 2

d(x)

∞∑
m=1

8̂nm(x)Gmn′(x, x
′) = δnn′δ(x − x ′). (9)

Here the locally quantized valuekn(x) of the electron longitudinal wavenumber and the
coefficient matrixAnm are given by

kn(x) =
(
k2
F −

[
πnα

d(x)

]2)1/2

Anm = nm

n2−m2
sin2

[π
2
(n−m)

]
. (10)



1526 N M Makarov and Yu V Tarasov

We omit the expression for the matrix potential8̂nm(x) in view of its awkwardness. It is
only important for us to point out its being the functional ofξ ′1(x) and1ξ ′(x) and becoming
zero as1ξ ′(x) = 0.

Equation (9) covers scattering of electrons by rough boundaries of the two-dimensional
electron waveguide under arbitrary correlation conditions for the asperity heightsξ1,2(x).
In this work, our intention is to discuss the case of not arbitrary but statistically identical
strip sides. Moreover, we deal with the conductors for which asperities of the opposite
sides correlate with each other just as they do within every edge of the strip. For stating
this CCB model of 2D junction we use the correlation equalities

〈ξi(x)〉 = 0 〈ξi(x)ξk(x ′)〉 = σ 2W(x − x ′) i, k = 1, 2. (11)

HereW(x) is the correlation coefficient specified by the amplitude unity and the correlation
radiusRc. As a consequence of equation (11), the following correlation functions equal
zero:

〈ξ1,2(x)1ξ(x
′)〉 = 〈1ξ(x)1ξ(x ′)〉 = 0. (12)

For the weak electron–surface scattering (or Gaussian statistics of the asperities), equ-
ation (12) leads to the same result for any averaged quantity as at1ξ(x) = 1ξ ′(x) = 0.
So hereinafter the local width of the strip,d(x), can be replaced by its average valued, and
the last term containing the potential8̂nm(x) in the l.h.s. of equation (9) can be dropped.
Below, we omit the subscript ‘1’ of the functionξ1(x) for simplicity.

The deviation of the factorα2 from unity in kn, equation (10), could be significant at
‘sharp’ asperities, as it causes an effective decrease of the number of modes propagating
in the waveguide. Taking this into account is not a major problem. Nevertheless, we
introduce one more simplification so as to make the calculations even more transparent. We
will consider only the mildly sloping boundary inhomogeneities for which

|ξ ′1,2(x)|2� 1. (13)

This allows us to put henceforwardα2 = 1 and neglect the perturbation of the velocity
operators in the expression (4) for the conductance.

Note that in equation (9) the term containing the potentialV̂(x) describes the intra-
channel (intramode) electron scattering with conservation of the quantum numbern. At
the same time, the perturbation operatorÛ(x) leads, in the basic approximation, just to
intermode scattering, since the corresponding sum overm in equation (9) is free of the term
with m = n (Ann = 0, in accordance with the definition from equation (10)). The inverse
lengths of the electron scattering from the potentialsV̂(x) andÛ(x) are proportional, in the
main approximation, to〈ξ ′4(x)〉 and 〈ξ ′2(x)〉, respectively. If the boundary asperities are
mildly sloping (13), these lengths could substantially differ. However, in the case of narrow
conductors with a single propagating electron mode (the ultra-quantum limit), when

1< kFd/π < 2 (14)

the term linear in the operator̂U(x) multiplied byG11(x, x
′) is not present in equation (9).

That is why the spatial decrease of the average single-mode Green function〈G11(x, x
′)〉

is determined not by the interchannel but by the intrachannel electron scattering with the
attenuation length proportional toσ−4. This is just the case that we analyse below.

For the benefit of our study an important point is to assume the electron–surface
scattering to be weak. That is, the electron relaxation lengthL1 in the open channel
with n = 1 has to be large as compared to the ‘microscopic’ lengths of our problem, and
specifically the electron wavelengthk−1

1 and the correlation radiusRc. What is more, the
conductor lengthL will be assumed to obey similar requirements, which are necessary for
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the averaging procedure to be reasonable. All of these conditions can be formulated through
the inequality

max{k−1
1 , Rc} � min{L1, L}. (15)

Note that we do not assume any predetermined interrelation betweenL andL1 or between
k−1

1 andRc.
To get the starting expression for the single-mode conductanceG1(L) one should

substitute equation (8) into equation (4). In line with the weak-scattering conditions (15),
all of the Green functions withn, n′ 6= 1 contribute toG1(L) slightly. Then for the
dimensionless single-mode conductanceT1(L) we have

T1(L) = G1(L)

e2/πh̄
= − 4

L2

∫∫ L/2

−L/2
dx dx ′

∂G11(x, x
′)

∂x

∂G∗11(x, x
′)

∂x ′
. (16)

As was pointed out, equation (9) withn = n′ = 1 does not contain the first degree of
the potentialÛ(x) at the functionG11(x, x

′). For this reason, in a single-channel strip the
electron–surface scattering caused by the potentialÛ(x) manifests itself in higher orders of
its magnitude. To obtain the correct equation forG11(x, x

′) one has to follow the procedure
outlined in appendix A. In the case of mildly sloping asperities (13) and with the weak-
scattering approximation (15), we get(
∂2

∂x2
+ k2

1 + i0

)
G11(x, x

′)−
(
π

d

)2

V̂(x)G11(x, x
′)

−
(

4

d

)2 ∫ L/2

−L/2
dx1 K̂(x, x1)G11(x1, x

′) = δ(x − x ′). (17)

Here the novel perturbation operator has occurred with the kernel

K̂(x, x ′) = −
∞∑
m=2

A2
1m

[
Û(x)G(0)

m (|x − x ′|)Û(x ′)− 〈 Û(x)G(0)
m (|x − x ′|)Û(x ′)〉

]
. (18)

The unperturbed Green functionsG(0)
m (|x−x ′|) of the modesm > 2 attenuate exponentially

along the strip over the electron wavelengths:

G(0)
m (|x − x ′|) = −

1

2|km| exp
(
−|km||x − x ′|

)
|km| =

[
(πm/d)2− k2

F

]1/2
. (19)

Thus, the problem is reduced to calculating the statistical moments〈T n1 (L)〉 of the
conductance (16) with the single-mode Green functions found from equation (17).

3. The two-scale model

Equation (17) for the Green functionG11(x, x
′) is strictly one dimensional and,

consequently, makes it possible to analyse in detail the effects of coherent multiple scattering
of electrons. Inhomogeneities of the strip edges now enter the scattering potentials of the
equation rather than the boundary conditions for the Green functions. In accordance with
the weak-scattering assumption (15), there exist two groups of substantially different spatial
scales in our problem. On the one hand, it is a group of ‘macroscopic’ lengths,L1 and
L, and, on the other, a pair of ‘microscopic’ lengths,k−1

1 and Rc. This suggests that
it is reasonable to apply when calculating the Green functionG11 a two-scale model of
oscillations.

Take the well-known representation for the one-dimensional Green functionG11(x, x
′),

G11(x, x
′) = W̃−1

[
ψ+(x)ψ−(x ′)2(x − x ′)+ ψ+(x ′)ψ−(x)2(x ′ − x)

]
. (20)
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In equation (20), the functionsψ±(x) are the linearly independent solutions of the uniform
equation (17) with the radiation conditions satisfied at the strip endsx = ±L/2, respectively.
The Wronskian of those functions is̃W , and2(x) is the Heaviside unit-step function.
The functionsψ±(x) will be sought as superpositions of modulated waves propagating in
opposite directions along thex-axis:

ψ±(x) = π±(x) exp(±ik1x)− iγ±(x) exp(∓ik1x). (21)

The radiation conditions for the functionsψ±(x) are stated as the ‘initial’ conditions
for the amplitudesπ±(x) andγ±(x), i.e.

π±(±L/2) = 1 γ±(±L/2) = 0. (22)

We emphasize that the amplitudesπ±(x) andγ±(x) in equations (21), (22) are varied at the
characteristic lengthL1 (or L). Therefore in the framework of the two-scale approximation
(15) they are smooth functions ofx as compared to the rapidly oscillating exponents
exp(±ik1x) and the correlation coefficientW(x).

According to equations (20), (21), the problem of calculating the Green functionG11

is reduced to finding the smooth amplitudesπ±(x) andγ±(x). Within the assumption (15),
the appropriate equations for them are deduced by the standard method of averaging over
the rapid phases (see, e.g., reference [15]). For doing that one should substituteψ±(x)
in the form (21) into the uniform equation (17) and multiply it by exp(∓ik1x). Then the
equation obtained should be averaged over a spatial interval of length intermediate between
the above-introduced macroscopic and microscopic scales. The same should be done using
the multiplier exp(±ik1x). As a result, we get the set of dynamic equations

π ′±(x)± iη(x)π±(x)± ζ ∗±(x)γ±(x) = 0

γ ′±(x)∓ iη(x)γ±(x)± ζ±(x)π±(x) = 0.
(23)

The variable coefficientsη(x) andζ±(x) are the space-averaged random fields associated
with the electron–surface interaction potentials from equation (17). The functionη(x) is
a real field whereasζ±(x) are complex conjugate ones. Since our concern is with the
quantities averaged over realizations of the random functionξ(x), only the correlation
properties of the fields are of decisive importance. In appendix B the exact expressions for
η(x) andζ±(x) are written out, and it is shown that within the two-scale model (15) all of
these functions can be properly regarded asδ-correlated Gaussian random processes with
correlation relations as follows:

〈η(x)〉 = 〈ζ±(x)〉 = 〈η(x)ζ±(x ′)〉 = 〈ζ±(x)ζ±(x ′)〉 = 0

〈η(x)η(x ′)〉 = Lf −1δ(x − x ′) 〈ζ±(x)ζ ∗±(x ′)〉 = Lb−1δ(x − x ′). (24)

Here in equation (24) two lengths are present,Lf andLb, specified by the expressions

L−1
f =

1

2k2
1

(
πσ

d

)4 ∫ ∞
−∞

dqx
2π

q4
xW

2(qx)

{
1+ 8

π2

∞∑
m′=2

A2
1m′

×
[
(2k1+ qx)2g(0)m′ (k1+ qx)+ (2k1− qx)2g(0)m′ (k1− qx)

]}2

(25)

L−1
b =

1

2k2
1

(
πσ

d

)4 ∫ ∞
−∞

dqx
2π

(q2
x − k2

1)
2W(qx − k1)W(qx + k1)

×
[

1+
(

4

π

)2 ∞∑
m=2

A2
1m(q

2
x − k2

1)g
(0)
m (qx)

]2

. (26)
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The function W(qx) is the Fourier transform of the correlation coefficientW(x)
from equation (11), andg(0)m (qx) is the analogous transform of the unperturbed Green
function (19):

g(0)m (qx) = −
1

q2
x + |km|2

. (27)

Making use of equations (20), (21) and (24), we can show that the superposition of the
inverse lengths (25) and (26) is the inverse outgoing length of attenuation of the average
Green function〈G11(x, x

′)〉. It is reasonable then to associate this superposition with the
lengthL1 from equation (15), i.e.

L−1
1 = L−1

f + L−1
b . (28)

From the derivation presented in appendix B, as well as from the appearance itself of
the expressions (25) and (26), it is easy to establish that the lengthLf is related to the
forward electron scattering (i.e. without changing the sign of the velocityx-component)
while Lb is related to the backward scattering. In our consideration the lengthLf specifies
the correlator〈η(x)η(x ′)〉 whereasLb controls the correlator〈ζ±(x)ζ ∗±(x ′)〉. Hence the
conclusion is clear that the fieldsη(x) andζ±(x) from equation (23) are responsible for the
forward and backward electron scattering, respectively.

4. Conductance and resistivity moments

The next step is to express the dimensionless conductance (16) through the smooth
amplitudesπ± and γ± and to average it subsequently over the random fieldsη(x) and
ζ±(x). To do this, substitute equations (20), (21) into equation (16). After a succession
of simple transformations with the use of the inequalities (15) we get the formula for the
conductance of a single-mode strip:

T1(L) = |π−1
± (∓L/2)|2. (29)

From this equality it naturally follows that the quantityπ−1
± (∓L/2) can be regarded as the

amplitude transmission coefficient of the waveguide of lengthL.
We introduce the amplitude reflection coefficient0±(x) = γ±(x)/π±(x), in accordance

with equation (21). From equation (23) it can be established that the quantitiesπ−1
± (x) and

0±(x), in line with their physical meaning, obey the flow conservation law:

|0±(x)|2+ |π−1
± (x)|2 = 1. (30)

As a consequence of equations (23), (22), the coefficient0±(x) satisfies the Riccati-type
equation with the homogeneous initial condition:

±d0±(x)
dx

= 2iη(x)0±(x)+ ζ ∗±(x)02
±(x)− ζ±(x)

0±(±L/2) = 0.
(31)

Being closed, this equation is more convenient to analyse than the set (23). Therefore,
expressing the single-mode conductance (29) through|0±(∓L/2)|2 by the use of the
conservation law (30), we will perform all of the following calculations in terms of the
reflection coefficient0±(x) rather than the transmission oneπ−1

± (x).
Attention should be given to the fact that the fieldη(x) may be eliminated from

equation (31) by concurrent phase transformations of the reflection coefficient0±(x) and
the fieldsζ±(x). These transformations retain the correlation relations (24) for the new
renormalized fieldsζ±(x) unaffected. That is, one can put the random functionη(x) in
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equation (31) equal to zero. Consequently, the outcome for an arbitrary moment of the
conductance is specified by just backscattering of electrons, i.e. by the attenuation length
Lb from equation (26).

Now let us define thenth moment of the reflection coefficient squared modulus:

R±n (x) = 〈|0±(x)|2n〉. (32)

From equation (31), one can obtain, on the basis of the Furutsu–Novikov formula and
the correlation relations (24), the differential–difference equation for that moment (see,
e.g., reference [16]):

±dR±n (x)
dx

= − n
2

Lb

[
R±n+1(x)− 2R±n (x)+ R±n−1(x)

]
n = 0, 1, 2, . . . (33)

with the initial condition on the coordinatex

R±n (±L/2) = δn0. (34)

Besides the condition (34), we haveR±0 (x) = 1 andR±n (x)→ 0 asn→∞, in accordance
with the definition (32).

A solution of equation (33) that matches all of the above conditions can be expressed
through the distribution functionP±L (u, x) and, upon due parametrization, represented as

R±n (x) =
∫ ∞

1
du P±L (u, x)

(
u− 1

u+ 1

)n
. (35)

In line with this representation, the statistical moments of the conductance (29) can be
written through the same distribution function:

〈T n1 (L)〉 = 〈(1− |0±(∓L/2)|2)n〉 =
∫ ∞

1
du P±L (u,∓L/2)

(
2

u+ 1

)n
. (36)

So we only need the probability densityP±L (u, x).
We substituteR±n (x) in the form (35) into equation (33) and perform some elementary

transformations. Then we get forP±L (u, x) the Fokker–Plank equation

±Lb ∂P
±
L (u, x)

∂x
= − ∂

∂u
(u2− 1)

∂P±L (u, x)
∂u

(37)

which is supplemented, according to equation (34), by initial conditions on the coordinatex:

P±L (u,±L/2) = δ(u− 1− 0). (38)

From the equalityR±0 (x) = 1, normalization of the functionP±L (u, x) to unity follows.
In its turn, this implies the distribution function to be integrable over the variableu—in
particular, atu→ 1 andu→∞.

The solution of equation (37), which satisfies the above-mentioned requirements, is well
established (see, e.g., reference [19]). It can be obtained by the use of the Mehler–Fock
transformation [17, 18] and is found to have the conventional form

P±L (coshα, x) = 1√
8π

(
L∓ 2x

2Lb

)−3/2

exp

(
−L∓ 2x

8Lb

)
×
∫ ∞
α

v dv

(coshv − coshα)1/2
exp

[
−v

2

4

(
L∓ 2x

2Lb

)−1
]

whereu = coshα α > 0. (39)
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With this solution we get from equation (36) a relatively simple, as well as suitable to
analyse, expression for thenth moment of the dimensionless conductanceT1(L):

〈T n1 (L)〉 =
4√
π

(
Lb

L

)3/2

exp

(
− L

4Lb

)∫ ∞
0

z dz

cosh2n−1 z
exp

(
−z2Lb

L

)
×
∫ z

0
dy cosh2(n−1) y n = 0,±1,±2, . . .. (40)

The formula (40) completely determines the main averaged transport characteristics of a
single-mode conducting strip.

5. Results and discussion

Let us write down the expressions for the average dimensionless conductance〈T1(L)〉 and
resistance〈T −1

1 (L)〉. We putn = 1 in equation (40) and take the integrals asymptotically
in the parameterL/Lb. Then the asymptotic expressions for the average conductance take
the form

〈T1(L)〉 ≈
{

1− L/Lb if L/Lb � 1

2−1π5/2(L/Lb)
−3/2 exp(−L/4Lb) if L/Lb � 1.

(41)

At n = −1 all of the integrals in equation (40) are calculated exactly, and for the average
dimensionless resistance we get the formula

〈T −1
1 (L)〉 = 1

2

[
1+ exp

(
2L

Lb

)]
. (42)

For the sake of completeness, we also give, without proof, the averaged logarithm of the
dimensionless conductance:

〈ln T1(L)〉 = −L/Lb. (43)

It can be found directly from the equations (23).
The results (41)–(43) match absolutely the concepts of the localization theory for one-

dimensional disordered conductors and therefore coincide in appearance with those obtained,
in particular, in reference [2]. The asymptotics (41) show exponential decrease of the
average conductance as the strip lengthL exceeds the localization lengthLloc = 4Lb. The
expression (42) describes exponential growth of the average resistance with growing strip
lengthL. Needless to say, the conductance and the resistance are not both self-averaged
quantities. The main difference of our results from those previously obtained is in the
relaxation lengthLb, equation (26), to be discussed below.

We now say a few words about the validity range for the results (25), (26), (40)–(43).
First of all, the boundary asperities of the electron waveguide were assumed to be mildly
sloping. The corresponding requirement (13) sets limits on the relation between the asperity
height and length:

(σ/Rc)
2� 1. (44)

Additional restrictions result from the weakness of the electron–surface scattering, equ-
ation (15). In accordance with equation (28), the lengthLf can be used therein as the
parameterL1, since the inequalityLf . Lb always holds true. One of the conditions (15),
namely,L1 � Rc, is reduced to smallness of the Fresnel parameterkFσ

2/Rc. In terms of
the diffraction theory, this means the absence of the shadowing effect in the scattering of
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the electron waves by rough boundaries (see, e.g., reference [20]). This condition can be
rewritten via the parameters of our problem as follows:

σ 2/Rcd � 1. (45)

The second inequality from equation (15),L1 � k−1
1 , is reduced merely to the product of

equation (44) and equation (45), so it holds automatically. It should be stressed that the
requirements of the asperity smoothness, equation (44), and the absence of the shadowing
effect, equation (45), are conventional in solving problems of the wave diffraction at rough
surfaces (see, e.g., reference [20]). The necessity of using them has not been overcome
until now.

It is instructive to note that in solving the diffraction problems the condition of smallness
of the so-called Rayleigh parameter(kzσ )2 is normally used. In the case of a single-channel
strip, equation (14), the ratio(σ/d)2 plays the role of this parameter. The results presented
herein are free of the above restriction. Indeed, the ratio(σ/d)2 was not thought to be small
at any step of handling the problem. Note that just the statistical identity and complete
correlation of the strip edges, equation (11), made it feasible to bypass this restriction.

The main result of our work is revealing the remarkable sensitivity of the interference
effects in a single-mode waveguide to the intercorrelation properties of the inhomogeneities
of the opposite boundaries. To be certain of this, it is sufficient to compare the localization
lengthL0, obtained in reference [2] for the conducting strip with only one boundary rough,
with the lengthLb from equation (26) of our paper. In the former caseL0 ∝ σ−2, whereas
in oursLb ∝ σ−4. At first glance this would seem to imply the CCB strips to be more
transparent for the electrons as against the junctions with arbitrary asperities of the sides.
However, this is not the case as a rule. To illustrate this statement, assume the correlation
functionW(x) of the asperitiesξ(x) as Gaussian:W(x) = exp(−x2/2R2

c ). Then one can
find lengthsL0 andLb related to each other as follows:

L0/Lb ∼
{
(σ/Rc)

2(d/Rc)
2 if Rc/d � 1 (k1Rc � 1)

(σ/d)2 exp(k2
1R

2
c ) if Rc/d � 1 (k1Rc � 1).

(46)

Note that in equation (46) the parameter(σ/d)2 should be thought of as small, because
the lengthL0 was obtained in reference [2] under this assumption. It is evident from
equation (46) that the ratioL0/Lb in both limiting cases is the product of a small parameter
and a large one. The parameters are such that the situation withL0 � Lb is mostly
realizable. Indeed, for the small-scale asperities, whenk1Rc � 1 (Rc/d � 1), this is
satisfied if the slope(σ/Rc)2 exceeds the small parameter(Rc/d)2. In the case of the
large-scale asperities, i.e.k1Rc � 1 (Rc/d � 1), the large exponent(k1Rc)

2 must merely
prevail over the logarithm 2 ln(d/σ ).

The fact that localization lengths in single-mode strips with different interboundary
statistics of the inhomogeneities could deviate significantly from one another can be
explained, in our opinion, in the following way. The localization lengthL0 from ref-
erence [2] corresponds to the electron scattering by the effective potential

U1 = (πh̄/d)2

m

ξ(x)

d
(47)

which depends on just the asperity heightξ(x) (m is the electron mass). In the CCB
case, all of the scattering potentials contain the gradientξ ′(x) instead of the functionξ(x).
Scattering by the potential (47) can be regarded as scattering by the asperity heights (or,
more precisely, by the waveguide width fluctuations). At the same time, scattering by
the potentials from equation (17) can be interpreted as being caused by the asperity slope
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fluctuations (or by the waveguide bends). The strength of the by-height and by-slope
scattering depends on different parameters. Whereas the scattering from the potential (47)
is governed by the Rayleigh parameter(σ/d)2, the by-slope scattering depends on the slope
parameter(σ/Rc)2. Besides, not the least of the factors is the functional dependence of the
potentials on the random functionξ(x). Indeed, the potential (47) is linear inξ(x) whereas
the potentials from equation (17) are quadratic inξ ′(x). Thus, the distinction between the
scattering mechanisms in the waveguide with one boundary rough and in the CCB strip
brings about the difference of the corresponding relaxation lengthsL0 andLb.

Another peculiarity of the electron scattering by the strongly correlated identical rough
edges is the necessity of taking into account the ‘evanescent’ waveguide modes, i.e. the
non-propagating modes. These modes are present in the last, i.e. the third, term in the
l.h.s. of equation (17). As is evident from the structure of the kernel (18), this term governs
intrachannel scattering of the propagating mode withn = 1 through interchannel transitions
via the virtual evanescent modes withn > 2. Those transitions contribute to the expressions
(25), (26) for the scattering lengths as much, in order of magnitude, as the direct intramode
scattering governed by the potentialV̂(x) in equation (17). The conclusion immediately
follows that neglect of the evanescent modes in solving the problems of wave and particle
propagation in waveguides is not quite correct in general. The present results demonstrate
that this question needs special analysis every time it arises.

Appendix A. Deriving the equation for the single-mode Green function

In the case of the CCB waveguide, when equations (11), (12) hold, equation (9) for the
mode Green functionGnn′(x, x

′) is represented as[
∂2

∂x2
+ k2

n + i0−
(
πn

d

)2

V̂(x)
]
Gnn′(x, x

′)− 4

d

∞∑
m=1

AnmÛ(x)Gmn′(x, x
′) = δnn′δ(x − x ′).

(A1)

This equation with radiative boundary conditions at the strip endsx = ±L/2 is obviously
equivalent to the Dyson-type integral equation

Gnn′(x, x
′) = G(0)

n (|x − x ′|)δnn′ +
(
πn

d

)2 ∫ L/2

−L/2
dx1 G

(0)
n (|x − x1|)V̂(x1)Gnn′(x1, x

′)

+ 4

d

∞∑
m=1

∫ L/2

−L/2
dx1 G

(0)
n (|x − x1|)AnmÛ(x1)Gmn′(x1, x

′). (A2)

HereG(0)
n (|x − x ′|) is the unperturbed Green function, being the solution of equation (A1)

at V̂(x) ≡ Û(x) ≡ 0.
As Ann = 0, the equations (A1), (A2) do not contain terms witĥU(x) acting on

Gnn′(x, x
′). To account for this action we have to substituteGmn′(x, x

′) in the form (A2)
into the last term in the l.h.s. of equation (A1). In doing so we obtain the perturbative
terms proportional to the operatorŝV, Û Û and Û V̂. Restricting ourselves, in view of the
mildly sloping asperities (13), to just perturbations quadratic inξ ′(x), we neglect the terms
containing the product̂UV̂. Then we get(
∂2

∂x2
+ k2

n + i0

)
Gnn′(x, x

′)−
(
πn

d

)2

V̂(x)Gnn′(x, x
′)
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−
(

4

d

)2 ∞∑
m,m′=1

AnmÛ(x)
∫ L/2

−L/2
dx1 G

(0)
m (|x − x1|)Amm′ Û(x1)Gm′n′(x1, x

′)

= δnn′δ(x − x ′)+ 4

d
Ann′ Û(x)G(0)

n′ (|x − x ′|). (A3)

It immediately follows from equations (A3), (10) that all of the off-diagonal Green functions
Gnn′(x, x

′) with n 6= n′ are small compared to the diagonal ones due to the second term in
the r.h.s. of equation (A3).

Let us rewrite equation (A3) for the single-mode Green functionG11(x, x
′):(

∂2

∂x2
+ k2

1 + i0

)
G11(x, x

′)−
(
π

d

)2

V̂(x)G11(x, x
′)

−
(

4

d

)2 ∞∑
m=2

A1mÛ(x)
∫ L/2

−L/2
dx1 G

(0)
m (|x − x1|)Am1Û(x1)G11(x1, x

′)

−
(

4

d

)2 ∞∑
m,m′=2

A1mÛ(x)
∫ L/2

−L/2
dx1 G

(0)
m (|x − x1|)Amm′ Û(x1)Gm′1(x1, x

′)

= δ(x − x ′). (A4)

The last term in the l.h.s. of this equation has only off-diagonal Green functions withm′ > 2
and can be consequently omitted. Thus we get from equation (A4) the asymptotically
justified closed equation forG11(x, x

′).
The mean value of the perturbative operator quadratic inÛ in equation (A4) differs

from zero. The zero-mean-valued operator necessary for the subsequent averaging over the
random fields can be obtained by merely subtracting the mean value of the original operator
from itself. In doing so we arrive at the equation(
∂2

∂x2
+ k2

1 + i0

)
G11(x, x

′)−
(
π

d

)2

V̂(x)G11(x, x
′)

−
(

4

d

)2 ∫ L/2

−L/2
dx1 K̂(x, x1)G11(x1, x

′)

+
(

4

d

)2 ∞∑
m=2

A2
1m

∫ L/2

−L/2
dx1 〈Û(x)G(0)

m (|x − x1|)Û(x1)〉G11(x1, x
′)

= δ(x − x ′). (A5)

Here the novel perturbation operator has occurred specified by the kernelK̂(x, x ′), equ-
ation (18). Also, an additional—i.e. the last—term has appeared in the l.h.s. of equ-
ation (A5). Detailed analysis shows that this term gives rise to the small real renormalization
of the wavenumberk1 and has no effect on the relaxation processes. This permits us to
drop it from equation (A5) and come directly to equation (17).

Appendix B. Formulation of the correlation relations for the space-averaged random
fields

In section 3 we performed an averaging over the rapid phases, and arrived at equations (23)
in which the functionsη(x) andζ±(x) could be written as the sums

η(x) = S+V (x)+ S+U (x) ζ−(x) = S−V (x)+ S−U (x) ζ+(x) = ζ ∗−(x). (B1)
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The random fieldsS±V (x) andS±U (x) are associated with the potentialsV̂(x) andK̂(x, x1):

S±V (x) =
1

2k1

(
π

d

)2 ∫ x+l

x−l

dx ′

2l
e−ik1x

′ V̂(x ′)e±ik1x
′

(B2)

S±U (x) =
1

2k1

(
4

d

)2 ∫ x+l

x−l

dx ′

2l

∫ L/2

−L/2
dx1 e−ik1x

′
K̂(x ′, x1)e

±ik1x1. (B3)

Here the lengthl is chosen arbitrary within the interval

max{k−1
1 , Rc} � l � min{L1, L}. (B4)

In this appendix we describe a way to obtain the correlation relations (24). We will
demonstrate this with a simple example of correlators of the fieldsS±V (x) only. By
substitutingV̂(x) in the form (7) into equation (B2) and expressingξ(x) as the Fourier
integral, we get

S±V (x) = −
1

2k1

(
π

d

)2 ∫ ∞
−∞

dqx
2π

(qx ∓ k1)

∫ ∞
−∞

dq ′x
2π

(q ′x − qx) exp[i(q ′x − k1)x]

× sin[(q ′x − k1)l]

(q ′x − k1)l

[
ξ̃ (q ′x − qx)ξ̃ (qx ∓ k1)− 〈ξ̃ (q ′x − qx)ξ̃ (qx ∓ k1)〉

]
(B5)

with ξ̃ (qx) being the Fourier transform ofξ(x):

ξ̃ (qx) =
∫ L/2

−L/2
dx ξ(x) exp(−iqxx). (B6)

Assumingξ(x) to be the Gaussian random process we have the correlation equalities for
ξ̃ (qx) resulting immediately from equation (11):

〈ξ̃ (qx)〉 = 0 〈ξ̃ (qx)ξ̃ (q ′x)〉 = σ 2W(qx)1(qx + q ′x). (B7)

Here1(qx) indicates the ‘underlimiting’δ-function:

1(qx) =
∫ L/2

−L/2
dx exp(±iqxx) = sin(qxL/2)

qx/2
→ 2πδ(qx). (B8)

From equations (B5) and (B7) we deduce the following integral expression for the
binary correlation function:

〈S±V (x)S±V (x ′)〉 =
(

1

2k1

)2(
πσ

d

)4 ∫ ∞
−∞

dqx dq ′x dq ′′x dq ′′′x
(2π)4

(qx ∓ k1)(q
′
x − qx)(q ′′x ∓ k1)

× (q ′′′x − q ′′x )W(qx ∓ k1)W(q
′
x − qx) exp[i(q ′x − k1)x + i(q ′′′x − k1)x

′]

× sin[(q ′x − k1)l]

(q ′x − k1)l

sin[(q ′′′x − k1)l]

(q ′′′x − k1)l

× 1(q ′′′x + q ′x ∓ 2k1)
[
1(q ′′x + qx ∓ 2k1)+1(q ′′x + q ′x − qx ∓ k1)

]
. (B9)

The integrand of equation (B9) contains three types of sharp function. The first is1(qx)

with the variation scaleqx ∼ L−1, the second,W(qx), varies asqx ∼ R−1
c , while the third

type are those of the form sin(qxl)/qxl. Owing to equation (B4), the function1(qx) is the
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sharpest in the integrand. With its aid we take the integrals overq ′′x andq ′′′x . Theq ′x-integral
is evaluated through use of third-type sharp functions. In this way we obtain the formula

〈S±V (x)S±V (x ′)〉 =
3∓ 1

8k2
1

(
πσ

d

)4 ∫ ∞
−∞

dqx
2π

(qx ∓ k1)
2W(qx ∓ k1)

× [
(qx − k1)

2W(qx − k1)+ (qx + k1∓ 2k1)
2W(qx + k1∓ 2k1)

]
× exp[−i(k1∓ k1)(x + x ′)]F±l (x − x ′). (B10)

The functionsF±l (x) in equation (B10) are

F+l (x) =
1− |x|/2l

2l
2(2l − |x|) F−l (x) =

sin[4(1− |x|/2l)k1l]

8k1l2
2(2l − |x|). (B11)

The functionF+l (x) is sharp within the scalesL1 andL with mean value unity:∫ ∞
−∞

dx F+l (x) = 1. (B12)

Thus this function can be replaced by theδ-function in the correlator〈S+V (x)S+V (x ′)〉. At
the same time, the functionF−l (x) is intrinsically small in the parameter(k1l)

−2 � 1
and, consequently, is allowed to be set to zero. Taking this into account we get the final
expressions for the correlators (B9), with the accuracy prescribed by the conditions (B4):

〈S+V (x)S+V (x ′)〉 = L−1
f {VV }δ(x − x ′)

〈S−V (x)S−V (x ′)〉 = 0.
(B13)

Here,Lf {VV } stands for the electron relaxation length conditioned by the potentialV̂(x)
and corresponds to the forward electron scattering. From equation (B10) it follows that

L−1
f {VV } =

1

2k2
1

(
πσ

d

)4 ∫ ∞
−∞

dqx
2π

q4
xW

2(qx). (B14)

Performing analogous calculations for the correlators〈S±V (x)S±∗V (x ′)〉 we find, with the
same accuracy,

〈S+V (x)S+∗V (x ′)〉 = L−1
f {VV }δ(x − x ′)

〈S−V (x)S−∗V (x ′)〉 = L−1
b {VV }δ(x − x ′).

(B15)

HereL−1
b {VV } is the backward-scattering relaxation length specified by the expression

L−1
b {VV } =

1

2k2
1

(
πσ

d

)4 ∫ ∞
−∞

dqx
2π

(k2
1 − q2

x )
2W(k1− qx)W(k1+ qx). (B16)

Calculation of all of the remaining correlators of the functions (B2), (B3), necessary
for obtaining the correlation relations for the fieldsη(x) andζ±(x), can be done in a very
similar way. Minor additional complications are connected with the unwieldy structure of
the kernelK̂(x ′, x1) only, equation (18). They can be easily overcome by keeping in mind
the weak-scattering conditions, equation (15). The result is given by equations (24)–(26).
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